

Part I

Anton Gerdelan gerdela@scss.tcd.ie

Review

- labs - pointers and pointers to pointers
- memory allocation
- easier if you remember
- char* and char** are just basic ptr variables that hold an address
- int and char* and char** are just conveniences over assembly code
- e.g. 'what offset size should i use for ... [i], +, /, ...'
- e.g. [i] on a 1 byte type says 'get address of start and add i * 1 '
- the $i^{\star 1}$ bit is called the 'stride' - how long is each 'step' in memory

I have a big array of People of size n.
I need to find one holding a name variable "anton".

> Linear search - big-O?
> Pre-sorted binary search - big-O?

It would be great If I could just do:
Person me = people_array["anton"]
and get $\mathbf{O}(1)$ indexing. But this doesn't work.

How can I make this work?

If You Can Prepare the Data in Advance

- Assign each person that is created an unique index to the array.
- -> Or create a separate look-up table |name|array index|
- -> Usually you can do this. Done.
- If we can't prepare the data for each key (names for us) - we need to search the data structure.
- e.g. "Is there a user called 'anton' in the database?"
- -> Difficult. Evaluate hash table as an alternative to searching. Use name as the key.

Can we make a function that just turns a string into an integer?

How?

Create a Hash Function

- return sum of character codes in string? int index = 'a' + 'n' + 't' + 'o' + 'n';

$$
=97+110+116+110=433 ;
$$

- suggest some improvements to me:
- what if the sum is bigger than our array size?
- what if we have e.g. names: adi and ida?

Dealing with Limitations

- Make the array bigger to avoid collisions
- More wasted space -> space complexity ++
- Can't be perfect - allow some collisions
- More collisions -> time complexity ++
- Improve hash function to reduce collisions
- Hard. May over-fit to test input instances.

Allow Collisions

- Must allow some collisions or have infinite storage
- Several strategies exist
- "Use the next index down"
- Put a linked list behind every index
- Cost of each? \{Coding, Time, Space\}

Use the Next Index Down "Linear Probing"

Q. downsides?

Use the Next Index Down

- Relies on keys being mostly evenly distributed with some space in-between
- If keys are clustered
- Becomes a plain linear array search again
- tweak hash function
- enlarge array $S($ bigger)
- Easy to implement (can not be understated)

Chaining Hash Tables

Q. Big-O best/average/worst?

Chaining Hash Tables

- Avoid having to distribute gaps in hash table
- Put a linked list behind each array index
- Inherits pros and cons of linked lists
- Which are?
- (what are our criteria for evaluating data structs?)

Part II (lecture 8)

Rehash

Improve the Hash Function

- Generate more unique values
int index $=$ name[0] + name[1]*M^1 + name[2]*M^2 $+\ldots$
- warning: long strings will get too big for number and ??? (split them up so exponents don't get too high)
- Fit into a smaller array/table

```
M = 256
my_hash_table[M];
index = index % M;
```

- Can we do better? Why might 256 be a problem?

Powers of 2 are a problem?

- hash function $h(k)=k \% m$
$h(k)$ is function returning index
k is key input m is max size of table
- if m is a power of 2 , written $m=2^{\wedge} p$
- books say: then $h(k)$ is just the p lowest-order bits of k
- ~~ int index $=$ lowest M bits of index;

Improve the Hash Function

- A common strategy uses prime numbers - the product of a prime with another number has a very good chance of being [more] unique.
- Choose table size such that it is a prime near the size you expect.
- Choose constant k such that it is the same prime. e.g. change table[256] to table[251]
int index $=$ first letter * $251+$ second letter * $251 \wedge 2 \ldots$ index = index \% 251;

Diff

- Separate chaining - our linked lists add-on
- Can also use an array at each table index as "buckets" (not as flexible)
- Open addressing hashing methods:
- "Linear probing" - our 'use the next value along'
- load factor = item_count / array_size
- when load factor > ~2/3 then perf suffers
- uses <5 probes on avg. for a table <2/3 full
- Rehashing and double hashing
- quadratic probing
- ... there are lots of them! implementations differ between books/programmers etc.

Double Hashing

- $h(k, i)=\left(f(k)+i^{*} g(k)\right) \% M$
- where j and k are auxiliary hash functions
- first probe goes to array[f(k)]
- additional probes are offset not by 1 , but by the second function
- stepping by >1 means you might miss values. so...

Double Hashing

- to cover entire array $\mathrm{g}(\mathrm{k})$ must be relatively prime to M
- M is power of 2 and $\mathrm{g}(\mathrm{k})$ always returns odd number
- or M is prime and $g(k)$ always returns positive number less than M
- can work with other setups but difficult to predict coverage
- example where M is prime:
- $f(k)=k \% M$ $g(k)=1+\left(k \% M^{\prime}\right)$ where M^{\prime} is a slightly smaller M , e.g. $\mathrm{M}-1$
- will examine e.g. every 257th slot until all slots examined.

Minimum Knowledge

- Read at least one book's summary (some are online) of different hash table methods
- Implement your open simple open addressing function (linear probing)
- Know how to draw/explain a probing method
- Know when a hash table is and isn't an advantage
- Consider improvements to code with double hashing or chaining. Read some blogs/code from others.

Comparison

- Time complexity can depend on table load
- for large arrays and input strings at 90\% load:
- linear probe takes avg. $\mathbf{5 0}$ probes for unsuccessful search
- generates $O(m)$ range of values for keys
- double hashing takes 10
- generates $O\left(m^{\wedge} 2\right)$ values for keys (2 functions)
- don't let a hash table get 90% full!
- keep load small or don't use hash tables (space hungry)

Comparison

- open addressing is hard to compare to chaining
- chaining may be better when memory req. not known in advance
- otherwise double hashing wins (by a small margin)
- Cormen et. al. "Algorithms" have the best (most methods + lengthy + proofs) coverage of hash tables

Are they right?

- Try it!
- I tried w/ short input strings
- what's the biggest number in a 32-bit unsigned int?
- what values does pow(120, i) give with a string of length 32?
- split long strings or replace pow() with something else
- I hashed against: $\{8,16,32,64\}$
- and then primes: $\{7,17,31,61\}$

"Rate My Hash Function"

- Ratio of space used - "load factor". maximum is $\sim 90 \%$
- Frequency of double-ups
- Spread over table - clustered (~worse) or even (~better)?
- Rate by Average time complexity. Is our $\mathrm{O}(1+a)$ Closer to $\mathrm{O}(1)$ or $\mathrm{O}(\mathrm{n})$?
- Function must suit actual input instances, not just on paper
- If your data size n is small, you may have fallen for a trick question.
- Programmers often refine their own, personal 'awesome simple hash function' in their personal toolkit/header.

Hash Function Strategies

- Division (remainder) index = key \% n
- Compression sum or xor of large(er) input data
- Extraction
use only (more unique) part of the key as index
- Middle of square $k e y=k e y \wedge 2$. key $=$ extract middle part of key (more unique)
- Know what key data looks like to guide you making more efficient function

Hashing Touches other Disciplines

- Hash functions aren't just for tables
- e.g. SHA algorithm (Secure Hash Algorithm 1)
- output a checksum of particular length
- run 'checksum myfile' on your computer - compare output
- Cryptography
- File integrity
- download not corrupted
- this is the original file, nothing injected

Hash Function Algorithm Design

- Input data instance (our key)
- short string, uint, address, whole file
- Output data permutation
- table index between 0 and n - 1
- ideally each output index is equally likely (even distribution)
- or e.g. 20-byte checksum (usually display as hex)
- Algorithm is .: arithmetic and similar to a random number generator
- -> this is looking for a math. function with even distribution
- transform keys into numbers first - so we can do arithmetic on them

